Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1.

Identifieur interne : 001209 ( Main/Exploration ); précédent : 001208; suivant : 001210

Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1.

Auteurs : Lydie Michaillat [Suisse] ; Tonie Luise Baars ; Andreas Mayer

Source :

RBID : pubmed:22238359

Descripteurs français

English descriptors

Abstract

Size and copy number of organelles are influenced by an equilibrium of membrane fusion and fission. We studied this equilibrium on vacuoles-the lysosomes of yeast. Vacuole fusion can readily be reconstituted and quantified in vitro, but it had not been possible to study fission of the organelle in a similar way. Here we present a cell-free system that reconstitutes fragmentation of purified yeast vacuoles (lysosomes) into smaller vesicles. Fragmentation in vitro reproduces physiological aspects. It requires the dynamin-like GTPase Vps1p, V-ATPase pump activity, cytosolic proteins, and ATP and GTP hydrolysis. We used the in vitro system to show that the vacuole-associated TOR complex 1 (TORC1) stimulates vacuole fragmentation but not the opposing reaction of vacuole fusion. Under nutrient restriction, TORC1 is inactivated, and the continuing fusion activity then dominates the fusion/fission equilibrium, decreasing the copy number and increasing the volume of the vacuolar compartment. This result can explain why nutrient restriction not only induces autophagy and a massive buildup of vacuolar/lysosomal hydrolases, but also leads to a concomitant increase in volume of the vacuolar compartment by coalescence of the organelles into a single large compartment.

DOI: 10.1091/mbc.E11-08-0703
PubMed: 22238359
PubMed Central: PMC3290646


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1.</title>
<author>
<name sortKey="Michaillat, Lydie" sort="Michaillat, Lydie" uniqKey="Michaillat L" first="Lydie" last="Michaillat">Lydie Michaillat</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Département de Biochimie, Université de Lausanne, 1066 Epalinges</wicri:regionArea>
<orgName type="university">Université de Lausanne</orgName>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baars, Tonie Luise" sort="Baars, Tonie Luise" uniqKey="Baars T" first="Tonie Luise" last="Baars">Tonie Luise Baars</name>
</author>
<author>
<name sortKey="Mayer, Andreas" sort="Mayer, Andreas" uniqKey="Mayer A" first="Andreas" last="Mayer">Andreas Mayer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22238359</idno>
<idno type="pmid">22238359</idno>
<idno type="doi">10.1091/mbc.E11-08-0703</idno>
<idno type="pmc">PMC3290646</idno>
<idno type="wicri:Area/Main/Corpus">001203</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001203</idno>
<idno type="wicri:Area/Main/Curation">001203</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001203</idno>
<idno type="wicri:Area/Main/Exploration">001203</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1.</title>
<author>
<name sortKey="Michaillat, Lydie" sort="Michaillat, Lydie" uniqKey="Michaillat L" first="Lydie" last="Michaillat">Lydie Michaillat</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Département de Biochimie, Université de Lausanne, 1066 Epalinges</wicri:regionArea>
<orgName type="university">Université de Lausanne</orgName>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baars, Tonie Luise" sort="Baars, Tonie Luise" uniqKey="Baars T" first="Tonie Luise" last="Baars">Tonie Luise Baars</name>
</author>
<author>
<name sortKey="Mayer, Andreas" sort="Mayer, Andreas" uniqKey="Mayer A" first="Andreas" last="Mayer">Andreas Mayer</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell-Free System (chemistry)</term>
<term>GTP-Binding Proteins (metabolism)</term>
<term>Guanosine Triphosphate (chemistry)</term>
<term>Guanosine Triphosphate (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Intracellular Membranes (metabolism)</term>
<term>Intracellular Membranes (ultrastructure)</term>
<term>Membrane Fusion (MeSH)</term>
<term>Protein Phosphatase 2 (metabolism)</term>
<term>Saccharomyces cerevisiae (chemistry)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (antagonists & inhibitors)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription Factors (antagonists & inhibitors)</term>
<term>Transcription Factors (metabolism)</term>
<term>Vacuoles (chemistry)</term>
<term>Vacuoles (metabolism)</term>
<term>Vacuoles (ultrastructure)</term>
<term>Vesicular Transport Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Facteurs de transcription (antagonistes et inhibiteurs)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Fusion membranaire (MeSH)</term>
<term>Guanosine triphosphate (composition chimique)</term>
<term>Guanosine triphosphate (métabolisme)</term>
<term>Hydrolyse (MeSH)</term>
<term>Membranes intracellulaires (métabolisme)</term>
<term>Membranes intracellulaires (ultrastructure)</term>
<term>Protein Phosphatase 2 (métabolisme)</term>
<term>Protéines G (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (antagonistes et inhibiteurs)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines du transport vésiculaire (métabolisme)</term>
<term>Saccharomyces cerevisiae (composition chimique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Système acellulaire (composition chimique)</term>
<term>Vacuoles (composition chimique)</term>
<term>Vacuoles (métabolisme)</term>
<term>Vacuoles (ultrastructure)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Guanosine Triphosphate</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>GTP-Binding Proteins</term>
<term>Guanosine Triphosphate</term>
<term>Protein Phosphatase 2</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
<term>Vesicular Transport Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell-Free System</term>
<term>Saccharomyces cerevisiae</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Guanosine triphosphate</term>
<term>Saccharomyces cerevisiae</term>
<term>Système acellulaire</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Intracellular Membranes</term>
<term>Saccharomyces cerevisiae</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Guanosine triphosphate</term>
<term>Membranes intracellulaires</term>
<term>Protein Phosphatase 2</term>
<term>Protéines G</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du transport vésiculaire</term>
<term>Saccharomyces cerevisiae</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Intracellular Membranes</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Hydrolysis</term>
<term>Membrane Fusion</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Fusion membranaire</term>
<term>Hydrolyse</term>
<term>Membranes intracellulaires</term>
<term>Vacuoles</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Size and copy number of organelles are influenced by an equilibrium of membrane fusion and fission. We studied this equilibrium on vacuoles-the lysosomes of yeast. Vacuole fusion can readily be reconstituted and quantified in vitro, but it had not been possible to study fission of the organelle in a similar way. Here we present a cell-free system that reconstitutes fragmentation of purified yeast vacuoles (lysosomes) into smaller vesicles. Fragmentation in vitro reproduces physiological aspects. It requires the dynamin-like GTPase Vps1p, V-ATPase pump activity, cytosolic proteins, and ATP and GTP hydrolysis. We used the in vitro system to show that the vacuole-associated TOR complex 1 (TORC1) stimulates vacuole fragmentation but not the opposing reaction of vacuole fusion. Under nutrient restriction, TORC1 is inactivated, and the continuing fusion activity then dominates the fusion/fission equilibrium, decreasing the copy number and increasing the volume of the vacuolar compartment. This result can explain why nutrient restriction not only induces autophagy and a massive buildup of vacuolar/lysosomal hydrolases, but also leads to a concomitant increase in volume of the vacuolar compartment by coalescence of the organelles into a single large compartment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22238359</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1.</ArticleTitle>
<Pagination>
<MedlinePgn>881-95</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E11-08-0703</ELocationID>
<Abstract>
<AbstractText>Size and copy number of organelles are influenced by an equilibrium of membrane fusion and fission. We studied this equilibrium on vacuoles-the lysosomes of yeast. Vacuole fusion can readily be reconstituted and quantified in vitro, but it had not been possible to study fission of the organelle in a similar way. Here we present a cell-free system that reconstitutes fragmentation of purified yeast vacuoles (lysosomes) into smaller vesicles. Fragmentation in vitro reproduces physiological aspects. It requires the dynamin-like GTPase Vps1p, V-ATPase pump activity, cytosolic proteins, and ATP and GTP hydrolysis. We used the in vitro system to show that the vacuole-associated TOR complex 1 (TORC1) stimulates vacuole fragmentation but not the opposing reaction of vacuole fusion. Under nutrient restriction, TORC1 is inactivated, and the continuing fusion activity then dominates the fusion/fission equilibrium, decreasing the copy number and increasing the volume of the vacuolar compartment. This result can explain why nutrient restriction not only induces autophagy and a massive buildup of vacuolar/lysosomal hydrolases, but also leads to a concomitant increase in volume of the vacuolar compartment by coalescence of the organelles into a single large compartment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Michaillat</LastName>
<ForeName>Lydie</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baars</LastName>
<ForeName>Tonie Luise</ForeName>
<Initials>TL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mayer</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>01</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033921">Vesicular Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>86-01-1</RegistryNumber>
<NameOfSubstance UI="D006160">Guanosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D054648">Protein Phosphatase 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="C104343">SIT4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D019204">GTP-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C064553">VPS1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002474" MajorTopicYN="N">Cell-Free System</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019204" MajorTopicYN="N">GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006160" MajorTopicYN="N">Guanosine Triphosphate</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007425" MajorTopicYN="N">Intracellular Membranes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008561" MajorTopicYN="N">Membrane Fusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054648" MajorTopicYN="N">Protein Phosphatase 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033921" MajorTopicYN="N">Vesicular Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22238359</ArticleId>
<ArticleId IdType="pii">mbc.E11-08-0703</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E11-08-0703</ArticleId>
<ArticleId IdType="pmc">PMC3290646</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2001 Feb 1;409(6820):581-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11214310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Membr Biol. 2003 Apr-Jun;20(2):117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12851069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 May;129(3):605-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7730399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2001 Jan 23;11(2):R67-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11231145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2009 Nov;8(11):1637-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19749176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2010;26:115-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20521906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2003 Aug;15(4):462-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1996 Nov;18(11):895-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8939067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2003;37:435-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14616069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2005;39:503-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16285870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1990 Sep;54(3):266-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2215422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Oct;18(10):3873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17652457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 May 21;264(2):187-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2162782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1238-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1993 Dec;5(6):990-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8129953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 2006;255:237-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17178468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Dec 1;438(7068):590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16319878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 Jan;4(1):5-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Mar 27;33(6):704-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19328065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1987;56:535-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3304144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Jul;126(1):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8027189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2006 Aug;18(4):386-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2007 May;12(5):739-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2010 Feb;11(2):175-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20015113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Aug 11;270(32):19066-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7642570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Jun;17(6):710-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20453860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Dec 19;171(6):981-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16365164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Nov 5;8(22):1219-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Apr;125(2):269-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8163545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Nov 1;14(21):5258-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7489715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Nov 24;119(5):667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15550248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 9;278(19):17012-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12618434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Aug;17(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15975782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Feb 27;172(5):693-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16492811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:315-333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Mar 18;156(6):1015-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11889142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Jul 12;146(1):57-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10402460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Apr;5(4):723-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16607019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 May 5;23(9):1922-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 17;465(7300):942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20526321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jun 12;93(6):1021-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9635431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:19-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2007;76:751-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17362197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jan 23;92(2):183-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9458043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1987 Oct;105(4):1539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2444598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Jul 21;162(2):211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12876274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Dec 10;155(6):979-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11733545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Dec;17(12):6847-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9372916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 1;14(23):5892-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2006 Oct;16(10):514-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16949287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Mar;128(5):779-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7533169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4328-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12642673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Mar 15;116(Pt 6):1107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12584253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ciba Found Symp. 1993;176:198-211; discussion 211-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8299420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Aug;17(4):376-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15978793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2006;22:79-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16704336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Apr 17;149(2):357-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Oct 1;23(19):3747-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15372071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Apr 5;85(1):83-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8620540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Nov;18(11):4232-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17699591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Jan 31;168(3):401-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15684030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1998 Oct 5;143(1):65-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9763421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2006 Aug;39(4):284-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16879978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Mar;124(6):903-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8132712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 10;108(19):7826-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Mar;11(3):807-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Oct 1;119(Pt 19):3994-4001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 1999 Sep;1(5):298-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2006 Feb;18(1):108-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16364623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Jun 4;12(11):885-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6392-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Jul;126(1):99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8027190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jul 1;19(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Dec;119(6):1469-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1334958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2002;18:379-420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12142281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2002 Apr;12(4):178-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11978537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Dec 17;27(24):3221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19037259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Nov;8(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1736-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2005 Apr;6(4):278-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Membr Biol. 2003 Apr-Jun;20(2):141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12851071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jan 30;14(2):115-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9483801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 May 29;149(5):1053-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10831609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Nov 17;16(22):6676-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9362482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jul 21;436(7049):410-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15924133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2000 Aug;12(4):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 6;422(6927):37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12621426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2002 Nov;59(11):1819-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12530516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 1999 Feb;380(2):147-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10195421</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Vaud</li>
</region>
<settlement>
<li>Lausanne</li>
</settlement>
<orgName>
<li>Université de Lausanne</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Baars, Tonie Luise" sort="Baars, Tonie Luise" uniqKey="Baars T" first="Tonie Luise" last="Baars">Tonie Luise Baars</name>
<name sortKey="Mayer, Andreas" sort="Mayer, Andreas" uniqKey="Mayer A" first="Andreas" last="Mayer">Andreas Mayer</name>
</noCountry>
<country name="Suisse">
<region name="Canton de Vaud">
<name sortKey="Michaillat, Lydie" sort="Michaillat, Lydie" uniqKey="Michaillat L" first="Lydie" last="Michaillat">Lydie Michaillat</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001209 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001209 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22238359
   |texte=   Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22238359" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020